Smartphone Imaging Trends Brian Klug Sr. Smartphone Editor, AnandTech.com

Background

- B.S. Optical Sciences & Engineering, University of Arizona
- Imaging Technology Lab with Steward Observatory
 - Worlds first curved front-illuminated CCD
 - ITL does BSI processing and characterization for CCDs used in astronomy, other photometric fields
- Thesis/Capstone: Terahertz GRIN Rapid prototyping
 - First THz GRIN objective cheaply fabricated on 3D printer

Background

AnandTech.com, Founded in 1997 by Anand Lal Shimpi

- Smartphones to Servers and Everything in Between
- Everything is a Computer
- Strong Background and Emphasis on Components
- Understand the Pieces to Understand the Pie

Optics 101

Index of refraction - n (unitless)

$$n \equiv \frac{\text{Speed of Light in Vacuum}}{\text{Speed of Light in Medium}} = \frac{c}{v}$$
$$c = 2.99792458 \times 10^8 \text{ m/s}$$
$$\lambda = \frac{v}{v} \qquad \text{in vacuum: } \lambda = \frac{c}{v}$$

- Material property ratio of how much the speed of light is slowed in a medium
- **Wavelength** λ (m), **Frequency** \vee (Hz)
 - Essentially "Color", Human Response 400 700 nm
- **Focal Length** f (m), **Power** φ (diopters)
 - Convergence or divergence of light from a system
 - Longer focal length more magnification, lower focal length, less magnification

Optics 101

F-number - F/# (unitless), F/#=f/d

- Describes the size of the cone of light accepted by the system / light collection ability. Lower F/# - more light, equal to the ratio of the focal length to diameter of the entrance pupil
- F-Stops typically go in √2 steps (1.4, 2, 2.8, 4, 5.6) which changes light collection by factor of 2

Optical / Image Sensor Format - eg. 1/3.2" (inches)

 Sensor size, but nothing to do with sensor size.
 Originally vidicon glass tube diameter required for some other active imaging area size. Use table.

Optical Systems

Many different optical systems

- Rifle Scopes
- Telescopes
- Microscopes
- Viewfinders
- Illumination / Projection
- Industrial / Science
- Internet (Fiber/EDFA)

Camera Systems

Approximation of the human eye

- Human eye images field onto retina using crystalline lens which changes index as stretched (focus)
- Objective system
 - Form an image of a scene onto some plane, image a distant object, hence objective

Simple Objective

Telephoto Objective

Imaging Block Diagram

Video Block Diagram

 Same fundamental architecture, but with either a crop of the sensor or decimated version of output, then through an encoder for H.264/MPEG4. Encoder usually on SoC.

Smartphone Context

- Smartphone camera systems have unique constraints
 - Very small throw (z-stack, module often thickest part)
 - Cost (\$5-15 for module)
 - Limited materials (Almost always plastic)
 - Unique manufacturing (Aspheres injection molding)
 - Horrible operating conditions (Every type of scene)
 - Small aperture (Battling ID of phone)
 - All while imaging onto tiny pixels (Impossible problem)

Smartphone Optical System

- Optics usually made of plastic, injection molded into aspheres (complex, nonspherical shapes). Limited to 2-5 elements (2P-5P). Glass uncommon.
 - Optical plastics quite limited: Styrene, Polystyrene, ZEONEX, PMMA(Acrylic)
 - Doublet: PMMA as Crown Polystyrene as Flint

- Fixed focal length, fixed aperture (no iris), sometimes an ND filter, no shutter, usually not very fast (f/2.8, 2.4)
- Short focal length (wide), tiny image circle formed

Example Lens List

Lens Li						*Blue colo	or is new info	ormation.		*Parenthes	sis is temporary	informatio	n.		
Pixels	Sensor Size	Sensor Maker	Sensor	Lens Composition	Glass Thickness	Focal Length	CRA (H)	FOV (D)	F№	RI IH100%	Effective Image Circle	Mech TTL	hanical FB	Screw Size	Study Design ES MP
8.0Mega	1/2.9"	Samsung	3H3	5P	0.3	4.07	30.4°	73.7°	2.2	36.00%	6.50	5.2	1.1	M7.0×P0.35	Design
	1/3.2"	Omni Aptina SONY Samsung	OV-8820/30 AR0833 IMX105/175 3H2/3H7	5P	0.3	3.807	32.3	74.4	2.2	36.60%	6.17	4.45	0.94	M6.5×P0.25	ES
		Omni Aptina	OV-8820 AR0830/33	4P	0.3	4.50	24.6°	65.4°	2.8	45.00%	6.00	5.19	1.65	M6.0×P0.35	MP
		Omni Aptina SONY Samsung	OV-8820/30 AR0833 IMX105/175 3H2/3H7	5P	0.21	3.724	30.9	75.1	2.0	37.00%	6.10	4.60	0.83	M6.5×P0.25	Design
		Omni Aptina SONY	OV-8830 AR0833 IMX105/175	5P	0.3	4.36	27.8	66	2.4	39.50%	6.05	5.00	1.05	M6.5×P0.25	MP
12Mega	1/3.2"			5P	0.3	3.81	29.8°	72.4	2.5	41.90%	6.18	4.71	0.95	M7.0×P0.25	MP
		Samsung	3L1	5P	0.3	4.003	28.6°	70.2	2.4	45.00%	6.14	4.81	0.96	M6. 5×P0.25	MP
				5P	0.21	3.46	31.5°	76.4	2.4	35.40%	6.012	4.45	0.95	M6. 5×P0.35	Design
13Mega	1/3"	SONY	IMX091/135	5P	0.3	3.972	28.2	72.9	2.0	31.70%	6.167	5.0	1.0	M6.5×P0.25	Design
		SONY	IMX091/135	5P	0.3	3.807	32.3	75.3	2.2	36.00%	6.167	4.45	0.94	M6.5×P0.25	ES
		SONY	IMX091/135	5P	0.3	4.003	28.9	73	2.4	40.30%	6.14	4.81	0.96	M6.5×P0.25	MP
16Mega	1/2.5	Omni	OV16810	5P	0.3	5.556	27.2°	66.0°	2.0	47.80%	7.54	7. 454	1. 186	M9.0×P0.35	Design

Example System

"Lens system having wide-angle, high resolution, and large aperture"
 <u>US 8320061 B2</u>, Chun-Cheng Ko, Hon Hai Precision Industry Co., Ltd. (aka Foxconn)

- an aperture stop;
- a first lens of positive refractive power having a subject-side surface and an image-side surface;
- a second lens of negative refractive power having a subject-side surface and an image-side surface;
- a third lens of positive refractive power having a subject-side surface and an image-side surface; and
- a fourth lens of negative refractive power having a subject-side surface and an image-side surface;

	TABLE 3	
F(mm)	F/No	2ω
2.10	2.05	74.85°

Example Prescription

Radius of Curvature Index at d Separation Abbe # at d

Surface	R(mm)	D(mm)	Nd	Vd	k
SO	infinity	0.13	—	—	_
S1	2.20	1.02	1.54	56.1	-10.6809
S2	-1.02	0.16	—	—	0
S3	-0.67	0.30	1.63	23.4	-0.5019
S4	-2.39	0.05			3.6355
S5	-1.89	0.65	1.53	56.0	0
S6	-0.77	0.05			-0.8953
S7	1.13	0.48	1.53	56.0	-5.4234
S8	0.67	0.42	—	—	-3.2770
S9	infinity	0.21	1.52	58.6	
S10	infinity	0.36	—	_	
Image plane 60	_ ·	—	—	—	_

Polystyrene

http://refractiveindex.info/? group=PLASTICS&material=PS

http://refractiveindex.info/? group=PLASTICS&material=ZeonexE48

Example 5P System (LG)

Final Assembly

First Element

Last Element

Thursday, February 7, 13

Lens then goes into a module

Thursday, February 7, 13

Camera Module

Lens assembly

- VCM (Voice Coil Motor) electromagnet / speaker which moves the lens to focus
- IR Filter / AA filter
- CMOS sensor
- Packaging and ribbon flex cable
 - Drop that module into a phone

Imaging Block Diagram

CMOS Sensor Trends

Туре	Diagonal (mm)	Width (mm)	Height (mm)	Area (mm²)	Crop factor
1/4"	4	3.2	2.4	7.68	10.81
1/3.6"	5	4	3	12	8.65
1/3.2"	5.68	4.54	3.42	15.5	7.61
1/3"	6	4.8	3.6	17.3	7.21

- Rear CMOS size commonly around 1/3.2" or 1/4"
- Front CMOS smaller, but lower resolution 1/6", 1/7"
- Size of CMOS sensors are relatively fixed, trend is more of smaller pixels

CMOS Sensor Trends

Generation	n-3	n-2	n-1	n	Future (?)
Pixel Size (µm)	2.2	1.75	1.4	1.1	0.7
Area (µm^2)	4.84	3.06	1.96	1.21	0.49
Area Ratio	1.00	0.63	0.40	0.25	0.10
Waves, λ (@ 700 nm)	~3	~2.5	~2	~1.5	~1

Pixels : CMOS :: MHz : CPU - (MHz race, pixels)

- Pixels can't get much smaller, or they'll be sub one wave in size (weird quantum effects begin)
- >=5 MP (1.4 μ m), BSI is a necessity not just for sensitivity

BSI/FSI

- FSI Traditional way of imaging onto a CCD/ CMOS, through metal gating, incurring reflections
- BSI Requires removing material using wafer scale chemical or abrasive lapping, image directly into active region of sensor.
 Significantly higher QE.

Dirty Secret - IT'S A LIE

We can't resolve pixels that small to begin with... Oops....

from numpy import *
from scipy import *
from pylab import *

```
f = 3.63E-3 ## 3.63 mm focal length HTC One system
b = 1.4E-6 ## 1.4 micron standard modern pixel size, 1.1 newer, 1.65 micron older
fno = 2.0 ## HTC One S F/2.0
```

fnos = linspace(1.2,2.8,100) ## HTC One - F/2.0, iPhone 4S - F/2.4, SGS3 - F/2.6 bscale = linspace(0.7E-6,1.65E-6,100) ## Range of pixel sizs

zh = - f**2 / (b * fnos); ## hyperfocal distance zn = zh / fno ## nearest point in focus (hyperfocal/2)

diff = (2.44 * 700E-9 * fnos)/1.0E-6 ## airy disk first zero diameter 84% energy here

```
deltazprime = 4.88*700E-9 * fno ** 2
deltaz = (4 * deltazprime * f ** 2) / ((deltazprime)**2 - 4*(f - 3.7E-3)**2)
```

cla()
clf()
plot(fnos,diff)
title('Airy disk diameter as a function of F-Number')
xlabel('F/#')
ylabel('Spot size in microns')
savefig('fnosspotsize.png')

cla() clf() plot(fnos,zn) title('Hyperfocal distance as F/#') xlabel('F/#')

ylabel('Hyperfocal dist')
savefig('hyperfocalfixedpixel.png')

cla()
clf()
zh2 = - f**2 / (bscale * fno); ## hyperfocal distance fixed f=2.0
plot(bscale/1.0E-6,zh2/2)
title('Hyperfocal distance as pixel size')
xlabel('Pixel size (microns)')
ylabel('Hyperfocal dist')
savefig('hyperfocalfixedfnos.png')

Dirty Secret - IT'S A LIE

- Airy Disk Assumes perfect optics, limited only by diffraction (ideal system)
- Rayleigh Criterion camera example, before two points blur together
- Can't resolve that pixel size! Oops.

Hyperfocal distance

Distance after which everything is in focus

Thursday, February 7, 13

Imaging Block Diagram

ISP - Image Signal Processor

ISP usually onboard SoC, sometimes discrete

ISP Roles

- Demosaicing Sensor just senses photons, need Bayer color filter atop sensor to determine color.
 RGBG / GRGB, interpolate to RGB for each pixel.
- SA Autofocus, Autoexposure, Autowhitebalance
- Correction for lens imperfections Lens shading, geometry/distortion, vignetting, try to fix image
- Noise reduction, filtering, HDR, cleaning up, JPEG
- This is the controller for CMOS / Focus assembly

Imaging Block Diagram

Camera UI/UX

- Minimalist to highly customizable
- Still evolving, Many still making horrible mistakes
 - Low res/fps preview, wrong preview, broken UI, not enough controls, laggy
- Smartphone platform again unique - needs balance of speed and simplicity to be successful

Video Block Diagram

Same fundamental architecture, but with either a crop of the sensor or decimated version of output, then through an encoder for H.264/MPEG4. Encoder usually on SoC.

Video Encoder

- Usually on SoC, sometimes external
- Takes frames from CMOS, encodes to format of choice
 - Example Exynos 5 Dual: Multi-format Video Hardware Codec: 1080p 60fps (capable of decoding and encoding MPEG-4/H.263/H.264 and decoding only MPEG-2/VC1/VP8)
 - Imagination Technologies, Qualcomm, TI, Others
 - Not all are born equal. OEMs frequently not using full potential

15-20 Mbps H.264 1080p30 High Profile = Current

Video Block Diagram

Quality - What do you mean?

- Image "sharpness" MTF (Modulation Transfer Function) or FT of PSF (Point Spread Function)
 - What is the highest frequency that can make it through the optical system before contrast reverses
- Aberrations 3rd order and higher (wavefront error)
 - Spherical
 - Coma
 - Astigmatism
 - Field Curvature
 - Distortion

Cutoff frequency
$$v_0 = \frac{2NA}{\lambda} = \frac{1}{\lambda(F/\#)}$$

Aberrations

- No system is perfect good design balances out aberrations with other aberrations
- Center of field is easy, most aberrations blow up strongly at edge of field (by square or cube)
- Sphere not the perfect shape, ellipse is

		Υ _ρ	x _p	Field
		Depend	Depend	Depend
Tilt	111	Constant	None	Н
Distortion	311	Constant	None	H ³
Defocus	020	Linear	Linear	None
Field Curvature	220	Linear	Linear	H ²
Astigmatism	222	Linear	None	H ²
Coma	131	Quadratic	None	н
Spherical Aberratin	040	Cubic	Cubic	none

Chromatic Aberration

Axial chromatic aberration

- Each color comes to focus at a different point, because materials refract different colors differently
- Transverse chromatic aberration
 - Each color is deviated differently laterally on the image plane
- Fix with Achromatic doublet

- Scrutinize extreme field angles
 - Distortion
 - Chromatic fringing
 - Loss of contrast (MTF falling off)
 - Vignetting
 - Lens shading correction errors
- Test charts objective measures
 - Don't always tell full story

Thursday, February 7, 13

Thursday, February 7, 13

- Processing related
 - Aggressive noise reduction (loss of high frequency details to smooth regions of chroma/luma noise)
 - Sharpening kernels (halos around high frequency regions to artificially increase sharpness)
 - Moire (artifact of bad demosaicing algorithms)
 - Too much compression (artifacts)
 - Missed focus
 - Bad AWB, unnatural colors

MB vs MPs

4000+ images from smartphones - statistical analysis

Thursday, February 7, 13

MB vs MPs

Thursday, February 7, 13

Smartphone Imaging

- Smartphones rapidly displacing and disrupting traditional P&S market. Connected camera and smartphone blurring together
 - Smartphone OEMs without P&S business at disadvantage
- Imaging performance still volatile, changing each gen.
- Miniaturization approaching limits of physics
 - Needs computational photography techniques to improve beyond limits
- It's incredible smartphone cameras are as good as they are now